Directions: The following series follow some pattern. Find the number in each series which does not follow that pattern and is unfit in the seies.
- 96.., 46.., 72.., 180.., 630.., 2835
964672180630Option B
96 * 0.5 = 48 (not 46)48 * 1.5 = 72
72 * 2.5 = 180
180 * 3.5 = 630
630 * 4.5 = 2835
- 42…, 86…, 348…, 2094…, 16758
4286348209416758Option E
42 * 2 + 2 = 8686 * 4 + 4 = 348
348 * 6 + 6 = 2094
2094 * 8 + 8 =16760 (16758)
- 48…, 1764…, 1632.., 2622…, 2530
481764163226222530Option E
48 1764 1632 2622 2532
+12^3-12 -11^2-11 +10^3-10 -9^2-9 - 1582…, 1602…, 1634…, 1690…, 1782…, 1920
15821602163416901920Option E
1582 1602 1634 1690 1782 192220 32 56 92 140
12 24 36 48
- 124…, 63…64…, 130.., 524.., 4200.., 67214
636413052467214Option E
124 * 0.5 + 1 =6363 * 1 + 1 = 64
64 * 2 + 2 = 130
130 * 4 + 4 = 524
524 * 8 + 8 = 4200
4200 * 16 + 16 = 67216 (not 67214)
- 7512.., 3756…, 1252…, ?… , 62.6
231313455320334Option B
The pattern is, ÷ 2, ÷ 3, ÷ 4, ÷ 5,….
The answer is, 313 - 36…, 32…, 73…, 203…, 837…, ?..
32104149450046774433Option B
The pattern is, *1 – 22, *2 + 32, *3 – 42, *4 + 52, *5 – 62,….
The answer is, 4149 - 3278…, 5384…, 6086…, 6320…, ?… , 6424
56786740639855666889Option C
3278 5384 6086 6320 6398 6424
2106 702 234 78 26
The difference is, ÷ 3
The answer is, 6398 - 819…, 818…, 408…, 135…, ?..
3131.53232.7533Option D
The pattern is,
(819 – 1)/1 = 818
(818 – 2)/2 = 408
(408 – 3)/3 = 135
(135 – 4)/4 = 32.75
The answer is, 32.75 - 1276…, 1280…, 1296…, 1360…, ?… , 2640
12121313141415151616Option E
The pattern is, +4^1, +4^2, +4^3, +4^4,….
The answer is, 1616
Directions: The following series follow some pattern. Based on the same pattern find the number in place of (?) in each series.
I?ll right away grasp your rss as I can not in finding your email subscription hyperlink or newsletter service. Do you have any? Kindly allow me realize in order that I may just subscribe. Thanks.
I am extremely inspired along with your writing skills and also with the structure to your blog. Is this a paid subject or did you customize it your self? Either way keep up the nice quality writing, it?s uncommon to peer a great blog like this one today..